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Abstract—In this work we describe the first real world case 
study for the self-healing eDNA (electronic DNA) 
architecture by implementing the control and data 
processing of a Fourier Transform Spectrometer (FTS) on 
an eDNA prototype. For this purpose the eDNA prototype 
has been ported from a Xilinx Virtex 5 FPGA to an 
embedded system consisting of a PowerPC and a Xilinx 
Virtex 5 FPGA. The FTS instrument features a novel liquid 
crystal waveguide, which consequently eliminates all 
moving parts from the instrument. The addition of the 
eDNA architecture to do the control and data processing 
has resulted in a highly fault-tolerant FTS instrument. The 
case study has shown that the early stage prototype of the 
autonomous self-healing eDNA architecture is expensive in 
terms of execution time. 
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1. INTRODUCTION 
In the age of ubiquitous computing, all parts of the industry 
is in need of highly robust hardware platforms. Embedded 
systems are given increasingly often life-saving, life-
depending roles, such as autonomous subway systems, 
airplanes, cars, hospital equipment etc. An unprotected 
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hardware fault in any of these will have dire consequences, 
consequently hardware faults in such systems are always 
protected by huge amounts of redundancy. But even the 
state-of-the-art hardware fault prevention technique – 
Triple Modular Redundancy (TMR) has its limits. A fault 
in the voter circuits or a permanent fault in one of the 
copies will eliminate the TMR’s ability to identify the 
correct value, while a repair of the faulty module will allow 
it to reconstruct the TMR. The capability of a hardware 
platform to repair itself becomes particularly useful in 
space, where a repair mission will be either a great risk, 
impossible or very expensive, or all of the above. 
In the last decade, several biologically inspired 
reconfigurable self-healing hardware platforms have been 
proposed [3,4,5,6]. All of these suffer from problematic 
scaling issues due in particular to a too low level of logical 
granularity. Consequently, (to the best of our knowledge) 
neither of these has ever been applied to a real world 
application.  
Other approaches, such as roving STARS [7] uses a 
centralized approach, where a centralized processing unit is 
responsible for performing the fault tolerance mechanism. 
Clearly, approaches using a centralized unit have single-
point-of-failure properties, which in a high reliability 
environment would be unacceptable. 
The eDNA (electronic DNA) architecture [1,2] is designed 
for an ASIC implementation and will consequently be an 
entirely new type of fault-tolerant coarse grained FPGA due 
to the increased level of logical granularity, when compared 
to other approaches. The increased level of logical 
granularity makes the cost of the self-healing feature 
acceptable [2]. 
 
The case study application studied is a Fourier Transform 
Spectrometer (FTS) application. The prototype of the 
instrument is produced by NASA’s Jet Propulsion 
Laboratory and Vescent Photonics Inc. [10,11]. The 
instrument itself takes a novel approach to mechanical 
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robustness due to its novel liquid crystal waveguide, which 
eliminates the need for moving parts in the instrument. The 
moving parts in an FTS are considered the highest risk in 
sending an FTS instrument to space, due the extreme g-
forces applied during launch. This makes this case study 
particularly interesting because the result of applying the 
eDNA architecture to such a system would be an FTS 
instrument which is not only robust to mechanical faults 
but also to permanent and transient hardware faults. 
 
The next section outlines the basic structure and concept of 
the eDNA concept. After this, section 3 goes deeper into 
the concept and the architecture of the eDNA prototype. 
Section 4 describes in detail the FTS application. Section 5 
describes the integration of the FTS application on the 
eDNA architecture as well as the integration of the eDNA 
architecture on the embedded system. Section 6 presents the 
performance analysis of the eDNA architecture resulting 
from running the application. Finally, section 7 presents 
our conclusion. 

2. EDNA: FUNDAMENTAL CONCEPTS 
eDNA system is the name of the entire package described 
in this paper – consequently, we have two fundamental 
terms; the eDNA architecture and the eDNA program. 
Figure 1 shows an overview of the entire eDNA package. 

The eDNA architecture consists of a distributed array of 
multiple homogenous processing units called electronic 
cells (eCells). The term homogenous expresses the fact that 
all eCells contains the same hardware. The job of all eCells 
combined, is to implement the eDNA program, which is 
specified by the programmer. The eDNA program is 
translated into a binary version of the program, which is 
then fed to all eCells which all store it in a RAM block. 
Each eCell implements a part of the eDNA program. The 
specific part, which an eCell implements is, called the gene 
of this particular eCell. 

Each eCell contain a microprocessor and a 32 bit ALU 
which is configured by the microprocessor to perform a 
certain function described by the gene. The program run by 
the microprocessor is termed the ribosomal DNA (referring 
to the intracellular organelle in biological cells, responsible 
for synthesizing proteins and consequently functionality of 
the cells). The ribosomal DNA is a program written for the 
eCell microprocessor, which performs self-organizing and 
self-healing of the eDNA architecture. All eCells contain a 
copy of this program. 

Observe that no centralized processing unit is present. The 
eCells cooperate to complete the self-organization and self-
healing completely automous and without “outside” help. 

The eCells communicate with each other through a 
Network-on-Chip (NoC) 2D-mesh-8 architecture, where 

each eCell communicates directly with at most 8 adjacent 
neighbors depending on position. The position of an eCell 
in the NoC is represented by an (X,Y)-coordinate set. The 
NoC completes package transfers between eCells using a 
fault-tolerant data-transfer protocol, which can route 
around dead links.Figure 1 shows an overview of the eDNA 
package. 

 

Figure 1 Overview of the eDNA architecture 

3. EDNA ARCHITECTURE  
The electronic DNA (eDNA) hardware architecture 
presents a solution to this problem. Inspired by biology, the 
eDNA architecture consists of an array of homogenous 
small CPUs known as electronic cells (eCells) [1,13]. In 
our prototype implementation [2] each eCell consists of a 
Xilinx PicoBlaze (PB) [8,9], which is an 8-bit VHDL 
synthesizable soft-core provided by Xilinx (see Figure 2). 
The PicoBlaze is only responsible for executing the self-
organizing and self-healing algorithms (to be described 
later), which are located in the local RAM of the PicoBlaze. 
At runtime when no faults occur a 32-bit ALU is used for 
dataprocessing, where it performs an operation on the two 
32-bit operands A and B. A detailed block diagram of an 
eCell can be seen in Figure 2.  
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Figure 2 eCell Block Diagram 

The eCells communicate with each other via a 2D-mesh 
type Network-on-Chip (NoC) infrastructure. This allows 
the eCells to establish dynamical paths with each other. 
The package transfer in the network is implemented with a 
fault-tolerant handshaking protocol, which is capable of 
routing around dead links. An overview of the different 
parts of the eDNA architecture can be seen in Figure 3.  

 

Figure 3 Schematic of 3x3 eDNA architecture 

Self-organization: Programming eDNA 

The eDNA architecture is programmed by a program (the 
eDNA program) written in the eDNA programming 
language. The eDNA programming language [1,2] is a 
basic programming language with the usual if-then-else 
and loop control structures, but also includes an explicit 
way for the programmer to indicate which program parts 
should be run in parallel.  

During initialization each eCell receives a binary encoded 
version of the eDNA program and stores it in its local RAM 
block (the block RAM denoted eDNA RAM in Figure 2). In 
this way each eCell contains its copy of the eDNA program, 
this gives the eCells the powerful feature of self-awareness 
– i.e. each eCell know exactly what piece it plays in the 

complete applicational puzzle as well as what roles other 
eCells play. The binary encoded version of the eDNA 
program divides the eDNA program written in the eDNA 
language into tasks known as genes. Each eCell 
implements one gene (one task), where one gene is defined 
as one arithmetic operation of the eDNA program. An 
example of an eDNA program is seen in Figure 4. 

 

Figure 4 Example eDNA program 

This eDNA program would require 4 eCells: One to 
implement if (A == B) then, one to implement A 
= B + C, one to implement B = B – C, and one to 
implement C = B + 2. 

Self-organization: Gene Mapping and Placement 

When all eCells have received the complete eDNA program 
the self-organizing begins. The self-organizing is where 
each eCell locates its gene and configures the 32-bit ALU 
accordingly, by moving the particular genes to a block 
RAM shown in Figure 2 as the Gene RAM. Each eCell 
locates its gene by using its unique identifier, which 
identifies its position in the array. This identifier is simply 
an integer from 0 to N-1 (where N is the number of eCells) 
(seen in Figure 3 as the integer in the corner of each eCell). 
The identifier is distributed together with the eDNA. This 
identifier is consequently responsible for mapping the 
functionality of the eDNA program onto the different 
eCells. The self-organizing algorithm running on the 
PicoBlaze of an eCell is implemented by counting the 
number of genes and comparing it to the identifier this 
particular eCell has.  

Prior to this our eDNA software toolkit has analyzed the 
mapping of the application using a metaheuristic 
algorithm. The metaheuristic algorithm will return a 
potentially optimal solution to the mapping problem in the 
form of a mapping of genes to eCells, i.e., the sorted list of 
identifiers of eCells. The eCells then implement this 
mapping when self-organizing. 

Self-healing 

Self-healing is done by moving the gene of a faulty eCell to 
a spare eCell, i.e., an eCell which hasn’t been assigned a 
gene yet. Note that no physical “gene moving” takes place 
as the spare eCell already have the complete eDNA. Only 
the mapping of that particular gene switches from the faulty 
eCell to the spare eCell.  
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A crucial part of the self-healing process is the fault-
detection. However, in the current state of the prototype we 
haven’t implemented the fault-detection algorithm yet, so 
in this study we rely on manual fault-injection. When a 
fault is injected the self-healing algorithm run by the 
PicoBlaze of an eCell, completes the following steps: 

1. Restore the gene of the faulty eCell at a spare eCell  

2. Restore the gene state at the spare eCell 

Step 1 is the restoration of the functionality of the faulty 
eCell at a spare eCell. It is completed by simply remapping 
the unique identifier of the faulty eCell to a spare eCell and 
then broadcasting a message to all eCells requesting them 
to run the self-organizing algorithm again. This will cause 
the non-faulty eCells to speak with the spare eCell instead 
of the faulty eCell and will cause the spare eCell to realize 
that it is now an active eCell and participating in the 
running the application.  

Step 2: The gene state is basically the two registers holding 
the operands of the eCells functionality, e.g., B and C of the 
A = B + C eCell in the example program from Figure 4. 
Recovering the gene state is inherent to our fault detection 
algorithm and since it is not implemented in the prototype 
yet, it is not the scope of the paper. In the present prototype 
we can only recover registers B and C if they are constants. 
Otherwise, we might “be lucky” that the application will 
reinitialize the non-constant with the right value before the 
eCell is executed again. 

 

Figure 5 Self-healing example where 3 eCells are faulty 
and moved to a different spot 

Figure 5 shows an example of the self-healing. The black 
eCells are eCells which have been assigned a function. The 
grey eCells are spare-eCells. The numbers in each of the 
eCells indicates their unique identifier, which refers to the 
gene they are implementing. In this case eCell with 
identifier 5 is faulty. Since all eCells contain the eDNA, all 
that is needed to move the functionality to a spare-eCell is 
to change the mapping of identifier 5 to a spare eCell. The 
eCells will then autonomously reconfigure themselves to 

communicate with the spare instead of the original and the 
application can continue execution unabated. Observe that 
due to the moving of functionality the communication paths 
between eCells might be longer. Consequently, the only 
side-effect of the self-healing is possibly slightly longer 
communication time. 

The final version of the eDNA architecture is aimed 
towards an ASIC implementation to provide a customized 
high speed eCell processor design. The prototype used in 
this study is solely used to study the potential performance 
of the final solution as well as learn about improvements 
necessary to be implemented in the final ASIC solution. 

Further information about the eDNA architecture can be 
found in [1,2,14]. 

4. FOURIER TRANSFORM SPECTROMETER (FTS) 
APPLICATION 

Contrary to other spectrometers an FTS can analyze a gas 
using a broadband light source in one scan. This has the 
benefit that the instrument doesn’t necessarily have to carry 
a light source, but could use the sun as light source. This of 
course will save power, instrument area and weight. But 
even if a special light source were required it would still 
save power, because the light source doesn’t have to be 
tuned to emit different wavelengths. Also the light source 
would need to be on for a shorter period of time due to the 
parallelism inherent in the FTS. 

The standard way of building an FTS is to use a Michelson 
interferometer to create the interferogram. However, a 
Michelson interferometer is using movable mirrors to vary 
the optical path difference. Consequently, using an FTS in 
space applications based on a Michelson interferometer 
design is considered a risk. The reason is that the immense 
g-forces applied during launch might misalign the mirrors, 
which might cause a complete loss of function or 
uncertainties in the precision of the returned interferogram. 

With that motivation, NASA’s Jet Propulsion Laboratory 
and Vescent Photonics Inc., built an FTS where the 
Michelson interferometer is replaced by a highly tunable 
Liquid Crystal Waveguide (LCW) [10,11]. The schematic 
of this FTS instrument is depicted in Figure 6.  

It works like this: (1) incoming light is polarized at a 45 
degree angle, causing it to split into TE and TM modes 
(Figure 6 left), (2) the light then enters the LCW, where a 
voltage is applied to an electrode, known as the OPD 
electrode on the LCW. Changing this voltage causes one of 
the modes to travel a farther distance than the other (Figure 
6 mid), (3) the light exits the LCW and hits a beam 
combiner (Figure 6 right). Because one of the modes now is 
slightly out of phase with the other mode, the light received 
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at the detector is at a lower intensity than the light, which 
entered the LCW. This is exactly the same effect as the 
Michelson interferometer achieves, but with no moving 
parts! (4) By applying an FFT to the signal read from the 
detector the spectrum will be produced.  

 

Figure 6 FTS instrument developed by NASA’s Jet 
Propulsion Laboratory and Vescent Photonics Inc. 

FTS Data Operations 

A LabVIEW program is used to control the FTS and do the 
data processing of the detector readings.  

The computational steps the program completes are: 

1. Compute voltage for the OPD electrode. 

2. Apply the voltage and read and process the voltage 
reading from the detector. 

3. Process the voltage reading and do an FFT on it. 

We will implement step 1 and 2 on eDNA. 

5. INTEGRATION OF FTS APPLICATION IN EDNA 
The first step to integrate the FTS application on eDNA is 
to move eDNA from its current Virtex 5 FX-130T FPGA to 
an embedded system known as a CompactRIO platform 
[12] from National Instruments. The CompactRIO platform 
consists of a PowerPC at 800 MHz, a Xilinx Virtex 5 LX-
110 FPGA, an analog input module and an analog output 
module. The basic architecture of a CompactRIO platform 
is seen in Figure 7. A host PC programs the PowerPC and 
FPGA using LabVIEW. The FPGA can be used to run 
dedicated applications particular suited for FPGA 

implementation as well as be used to interact directly with 
the I/O modules. The I/O modules can be customized 
depending on the application. In our case the I/O modules 
are analog I/O modules to supply the electrode voltage and 
read the recorded voltage signal from the detector. 

 

Figure 7 CompactRIO architecture  

The eDNA architecture will be integrated on the Virtex 5 
FPGA of the CompactRIO system. The eDNA architecture 
exists as VHDL code, which can be integrated into 
LabVIEW by using IP integration tool known as 
Component Level IP Node (CLIP node) [13], which is used 
to interpret the top-level VHDL file of a design.  

eDNA architecture  LabVIEW interface 

When using CLIP the top-level ports of the VHDL code 
becomes a LabVIEW port object, which you can read/write 
from/to just as you would use an I/O module. But the eDNA 
architecture has a special handshaking protocol that needs 
to be observed in order to communicate with it. Figure 8 
shows a schematic of the eDNA architecture, its 
environment and the handshaking protocol.  

eDNA needs to be told when data is ready to be read and 
also when the environment is ready to receive data. When 
data is ready to be input to eDNA, the environment asserts 
the data_in_rdy signal and provide the data. When the 
environment is ready to receive data, it asserts the 
rdy_for_data signal and checks whether eDNA output a 
package identifier (idnt) which is not equal to 0, (since no 
idnt are allowed to be zero). Whenever the environment 
detects that the idnt is not zero, it waits 8 more clock cycles 
and the data is ready. This is because the NoC of eDNA has 
a link width of 1 bit in order to save NoC area, so data has 
to be read out in serial. Observe, that just because the 
environment assert the rdy_for_data signal doesn’t mean 
that eDNA will provide data.  

This handshaking is put into a separate sub-VI for ease of 
use. Whenever one want to send data to eDNA the 
inclusion of this sub-VI will take care of the handshaking. 
Observe that execution will not be allowed to continue until 
the sub-VI is done, which is when eDNA has produced an 
output package based on the data. 
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Figure 8 eDNA environment handshaking 

eDNA cannot access the I/O modules directly, it has to use 
the LabVIEW FPGA to read/write the analog I/O. In case 
of a read, LabVIEW will simply send the data to eDNA 
using the above mentioned sub-VI. This is not 100% 
efficient since each time data will need to be sent to eDNA, 
a load package needs to be created and sent. In [2] we 
discovered that one package transfer from one eCell to 
another takes 20 clock cycles, so we’re expecting a 
considerable performance penalty because of this.  

In case of a write, LabVIEW will simply read the data from 
eDNA and then send it to the analog output.  

Now it is also possible to download an eDNA program to 
eDNA by simply reading a file containing the eDNA genes 
and then send gene-by-gene the program to eDNA via the 
handshaking sub-VI. 

FTS application in the eDNA architecture 

The FTS application for eDNA consists of two parts: 

1. Voltage ramp generation 

2. Averaging of the voltage reading from the detector 

The program code for these parts was provided as 
LabVIEW code from Vescent Photonics. In order to 
implement this in eDNA we had to rewrite the LabVIEW 
code using the eDNA programming language.  

eDNA: Voltage ramp generation 

The ramp is a simple linear voltage ramp going from 0 to 
10 volts with a step size of 0.0025V, i.e., 4000 data points 
in total. The ADC of our analog output module take a 16-
bit signed value and convert it to a voltage from 0-10V. 
Consequently, if the data were to be stored in a memory, it 

would only occupy 8KB of memory. However, in the 
current state of the eDNA architecture prototype we don’t 
have that much memory, so eDNA will have to calculate 
the next ramp-step each time a new voltage ramp value is 
needed.  

The eDNA ramp program can be seen in Figure 9. 

 

Figure 9 eDNA voltage ramp program 

We had to make a small adaptation due to the early nature 
of the prototype, which is that currently eDNA can only 
compare to 0. This is why we use i = 3999 – k. This 
program uses 5 eCells. 

When the program is run 4000 times, all ramp values will 
have been generated and the ramping is done. 

eDNA: Averaging 

The original program by Vescent Photonics, samples 
160,000 points, which is downsampled to 4,000 points, i.e 
each point is averaged 40 times. However, to ease the 
hardware implementation we chose to implement the 
division as a right-shift, therefore the closest we can do is 
average each point 32 times. The eDNA program for the 
averaging can be seen in Figure 10. Another adaptation had 
to be made due to the state of the eDNA prototype, which is 
that if-then-else only support statements in both the true 
and false case, therefore we had to implement a dummy 
case for the true part. This implementation also uses 5 
eCells. 

 

Figure 10 eDNA averaging program 

This program is run 32 times for each averaging. Each 
iteration eDNA is supplied a new i value and a new 
detector value from the analog input module.  Furthermore, 
the sum is also reset before each start of the 32 iterations. 
This is done by LabVIEW sending a load package to eDNA 
with the sum reset to 0. 
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The two programs seem very similar, but in practice they 
are not. The eDNA ramp program is solely a source type of 
program – where the environment doesn’t provide any 
input to it apart from activating it. However, the eDNA 
averaging program is acting as a sink and a source, since 
the environment will have to stream the detector reading to 
the eDNA architecture. This demonstrates that eDNA 
supports two different ways of interacting with its 
environment. 

Finalizing the eDNA programs for deployment 

Finally, the programs are transfered to our eDNA Software 
Toolkit which compiles the programs into a gene-package 
of the form seen in Figure 11 (note the x’s denote that the 
value is hexadecimal). This is in fact a complete package, 
which is ready for sending. When an eCell receives such a 
gene package it will only store the 8-bit gene part; the rest 
is used for the package transfer. Depending on the number 
of connections each line in the eDNA program (except 
else, endif and endwhile) in the program takes up 
4 of these genes times the number of connections to other 
cells, so that would be 32 bits pr. connection pr. cell. 
Typically a cell has no more than 2 or 3 connections. The 
eDNA is consequently very compact but of course scales 
linearly with application size. 

The four 8-bit gene codes used to describe one line of 
eDNA program code is called a gene-set. The first 8-bit 
gene code is a program counter, which tells eDNA where to 
read the next gene-set from. The second 8-bit gene code is a 
relative address to the eCell that this gene needs to target. 
The third 8-bit gene code is the identifier, which the eCell 
will put on the package for the eCell described in the 
second gene and finally, the fourth 8-bit gene code is an 
ALU opcode telling the eCell which ALU operation to 
perform. If the eCell needs to forward the result of the ALU 
operation to more than one eCell, the ALU opcode of the 
next geneset will contain the code “00”. This tells the eCell 
to not execute the operation, but simply take the result from 
the result register. 

 

Figure 11 eDNA gene package 

 

6. EDNA PERFORMANCE ANALYSIS 
In this section we want to investigate the performance of 
eDNA regarding: 

1. FPGA area usage 

2. Execution time without faults 

3. Execution time in case of faults 

4. Self-healing time 

5. Data maintenance 

Comparison with FPGA implementation 

The FPGA implementation which we compare eDNA 
against is a LabVIEW FPGA implementation of the same 
functionality in the smartest way.  

This means that the ramp is implemented as a LUT 
containing the scaled ramp values (because the LUT can 
only take integer values), which are then rescaled upon 
reading. 

The averaging is implemented as a For-loop, which adds 32 
numbers and which are finally right shifted by 5. 

The VIs are seen in Figure 12. 

 

Figure 12 (a) FPGA ramp, (b) FPGA avg

FPGA area usage 

Table 1 shows the FPGA area usage for the two 
applications. 

Metric FPGA  
ramp 

eDNA 
ramp 

FPGA 
avg 

eDNA 
avg 

# slices 5340 31773 3801 21483 
# FFs 3765 17950 2774 11310 
# LUTs 4659 28926 3290 18902 

Table 1 FPGA area usage 

For both applications eDNA uses approximately 6x more 
slices, 4.5x more flip-flops, and 5.5x more LUTs. This a 
little better than expected since the array used to implement 
the application is a 3x3, meaning that we have 9 eCells 
which all contains an ALU with a 32-bit adder and a 32-bit 
shifter, consequently, 8 more adders and 8 more shifters 
than the FPGA implementation uses. 

The reason why the area of eDNA varies from application 
to application is because in LabVIEW more non-reentrant 
eDNA subVIs had to be added to take care of the streaming 
of the data read from the detector. 
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Execution time without faults 

The results presented in this section are the execution time 
of running the ramp and averaging application without any 
analog I/O. The execution time for the ramp is the time it 
takes to calculate one ramp value. The execution time for 
the averaging is the time it takes to calculate the average of 
32 integers. 

FPGA 
RAMP 

EDNA 
RAMP 

FPGA 
AVG 

EDNA 
AVG 

41US 242US 2.42US 219US 

Table 2 Execution time without faults 

The FPGA ramp was implemented as a lookup table 
holding scaled integer values representing the voltages for 
the ramp. This means that we have to divide the output of 
the lookup table with the scaling factor. For the ramp, 
eDNA is 6x slower.  

The FPGA averaging was implemented using an adder, 
which accumulated the 32 readings of the detector and 
finally, shifted the result 5 bits to the right. This is a very 
fast operation and consequently, eDNA is 90x slower. The 
main contributor to this time is the fact that eDNA uses 20 
clock cycles pr. package transfer. The FPGA 
implementation can be done in 97 clock cycles. So it is  
clear that, since the eDNA averaging consists of 5 eCells, 
we will use a lot of time sending packages back and forth. 

The reason why this difference is less pronounced for the 
ramp is due to two reasons: 

1. The FPGA implementation is a memory operation 
and consequently is slow. 

2. The eDNA program is only run once pr. ramp as 
opposed to 32 times for the averaging. This means 
that the data transfer penalty is not as visible. 

Execution time in case of faults 

Now we want to study the execution time in case we have 
faults as well as the effect of the fault.  

The first fault scenario we will look at is depicted in Figure 
13. Figure 14 shows the execution time for the eDNA 
averaging in case of an injected fault at sample nr. 1000 at 
the eCell shown in Figure 13. Note that the execution time 
displayed on the y-axis includes analog input reading plus 
additional logic to control the fault injection. These results 
should be normalized using the results from Table 2.  

 

Figure 13 Fault scenario 1 

 

Figure 14 Execution time of eDNA averaging in case of a 
fault at sample nr. 1000 

When the fault occurs, we see that the self-healing time is 
approx. 116 us higher than regularly. The exact same time 
is seen for the eDNA ramp application. This doesn’t 
depend on the application but on the number of eCells, 
since the time reflects what is used to reconfigure. We also 
see that after the fault is repaired eDNA uses roughly 1 us 
more pr. sample. The reason for this is that eCell 5 which 
was faulty is now moved further away from the other eCells 
as seen in Figure 13. 

Instead of replacing eCell 5 with eCell 7 we will now 
replace eCell 5 with eCell 9, which is even further away. 
This yields the execution time curve seen in Figure 15. 
After the fault the execution time is now 15us worse – just 
because of a slight change in chosen spare eCell. This 
stresses the fact that our NoC is very expensive – since all 
that is changed from Figure 14 to Figure 15 is the 
placement of one eCell. 



 

 9 

 

Figure 15 Execution time when picking a slightly worse 
eCell 

As described in section 3, we have not yet implemented the 
fault detection algorithm. This means that we at the present 
prototype are incapable of always reconstructing the right 
data. We rely on eDNAs ability to reconstruct constants. 
Figure 16 shows the data output for fault scenario 1 except 
that the fault is introduced at 450 us. The amplitude point 
going to -6.5 is due to the fact that eDNA is unable to 
recover the right value of the sum when the fault occurs 
(Figure 10 – eCell 5 is doing: avg = sum >> 5). But as 
soon as the next data point is read the sum will be reset and 
eDNA will be calculating correctly again. Fortunately, 
eDNA notifies the user of the fault occurrence, by 
outputting a package with a special header, explaining 
where the fault occurred and where the new eCell was 
placed. In this way a filter could be applied, which filter 
this data from the original data set. This is stressed when 
we look at what happens for faults in the eDNA ramp. 
Figure 17 shows the ramp output of eDNA when a fault is 
introduced in an eCell at ramp nr. 450. The result is that 
the voltage applied drops to 0. Figure 18 shows the impact 
on the interferogram. Clearly, with the current state of the 
prototype it would be necessary to filter points which eDNA 
mark as faulty from the original data set. 

 

 

 

 

Figure 16 Impact on data when eCell 5 is faulty at 
sample nr. 450 

 
Figure 17 Fault in eDNA ramp at ramp nr. 450 

 

Figure 18 Impact on interferogram of fault in eDNA 
ramp 

Result discussion 

It should be noted that the comparison done in this paper is 
not a completely fair comparison to eDNA, because eDNA 
is targeted to become a new type of FPGA platform. 
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Consequently, eDNA is implemented as an FPGA platform 
on top of another FPGA platform. This would give us a 
unfair penalty especially for the routing, which already is a 
bottleneck for eDNA. However, the eDNA prototype is 
currently implemented on an FPGA and not an ASIC, so 
the results from that study is future work.  

7. CONCLUSION 
This work describes the first implementation of the eDNA 
architecture in a real world application – a Fourier 
Transform Spectrometer (FTS). The integration of the 
eDNA prototype into the CompactRIO embedded system 
was fast and unproblematic. We implemented the control 
and dataprocessing of the FTS on eDNA and learned that 
autonomous self-healing comes at a high cost. However, we 
have good reason to believe that we can decrease this cost a 
lot for several reasons: (1) We have a huge (20 clock cycles 
pr. package transfer) communication overhead in our 
Network-on-Chip infrastructure. We hope to improve this 
by making wider links, consequently eliminating our 
current sequential bit-by-bit package transfer, (2) The 
prototype is aimed at an ASIC implementation to be a new 
type of FPGA. Consequently, the current prototype is an 
FPGA architecture on top of another FPGA architecture 
which is bound to give a performance penalty especially for 
routing which is already a punishing eDNA. (3) The 
PicoBlaze microprocessor is only 8-bit, consequently 
wasting 3 clock cycles pr. operation. We would like to 
replace this with a dedicated ASIP. 

Another important step for eDNA is the implementation of 
the fault-detection algorithm in order to make eDNA truly 
autonomous. Furthermore, the work in this paper shows 
that the self-healing time is a fraction of the execution time 
of an application. 
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